How can we extend a pre-trained model to many language understanding tasks, without labeled or additional unlabeled data? Pre-trained language models (PLMs) have been effective for a wide range of NLP tasks. However, existing approaches either require fine-tuning on downstream labeled datasets or manually constructing proper prompts. In this paper, we propose nonparametric prompting PLM (NPPrompt) for fully zero-shot language understanding. Unlike previous methods, NPPrompt uses only pre-trained language models and does not require any labeled data or additional raw corpus for further fine-tuning, nor does it rely on humans to construct a comprehensive set of prompt label words. We evaluate NPPrompt against previous major few-shot and zero-shot learning methods on diverse NLP tasks: including text classification, text entailment, similar text retrieval, and paraphrasing. Experimental results demonstrate that our NPPrompt outperforms the previous best fully zero-shot method by big margins, with absolute gains of 12.8% in accuracy on text classification and 18.9% on the GLUE benchmark.
translated by 谷歌翻译
This paper proposes a hardware-efficient architecture, Linearized Convolution Network (LiCo-Net) for keyword spotting. It is optimized specifically for low-power processor units like microcontrollers. ML operators exhibit heterogeneous efficiency profiles on power-efficient hardware. Given the exact theoretical computation cost, int8 operators are more computation-effective than float operators, and linear layers are often more efficient than other layers. The proposed LiCo-Net is a dual-phase system that uses the efficient int8 linear operators at the inference phase and applies streaming convolutions at the training phase to maintain a high model capacity. The experimental results show that LiCo-Net outperforms single-value decomposition filter (SVDF) on hardware efficiency with on-par detection performance. Compared to SVDF, LiCo-Net reduces cycles by 40% on HiFi4 DSP.
translated by 谷歌翻译
深度估计对于各种重要的现实世界应用至关重要,例如自动驾驶。但是,在高速场景中,它遭受了严重的性能退化,因为传统相机只能捕获模糊的图像。为了解决这个问题,Spike摄像头旨在以高框架速率捕获像素的亮度强度。但是,使用传统的单眼或立体声深度估计算法,使用尖峰摄像机的深度估计仍然非常具有挑战性,这些算法基于光度一致性。在本文中,我们提出了一种新型的不确定性引导深度融合(UGDF)框架,以融合Spike摄像机的单眼和立体声深度估计网络的预测。我们的框架是由于立体声尖峰深度估计在近距离取得更好的结果,而单眼尖峰深度估计获得了更好的结果。因此,我们引入了具有联合培训策略的双任务深度估计结构,并估算了分布式不确定性以融合单眼和立体声结果。为了证明尖峰深度估计比传统的摄像头深度估计的优势,我们为一个名为CitySpike20k的尖峰深度数据集,其中包含20k配对的样品,以进行尖峰深度估计。 UGDF在CitySpike20k上取得了最新的结果,超过了所有单眼或立体声尖峰深度估计基线。我们进行了广泛的实验,以评估我们方法对CitySpike20k的有效性和概括。据我们所知,我们的框架是第一个用于尖峰摄像头深度估算的双任务融合框架。代码和数据集将发布。
translated by 谷歌翻译
本文回顾了AIM 2022上压缩图像和视频超级分辨率的挑战。这项挑战包括两条曲目。轨道1的目标是压缩图像的超分辨率,轨迹〜2靶向压缩视频的超分辨率。在轨道1中,我们使用流行的数据集DIV2K作为培训,验证和测试集。在轨道2中,我们提出了LDV 3.0数据集,其中包含365个视频,包括LDV 2.0数据集(335个视频)和30个其他视频。在这一挑战中,有12支球队和2支球队分别提交了赛道1和赛道2的最终结果。所提出的方法和解决方案衡量了压缩图像和视频上超分辨率的最先进。提出的LDV 3.0数据集可在https://github.com/renyang-home/ldv_dataset上找到。此挑战的首页是在https://github.com/renyang-home/aim22_compresssr。
translated by 谷歌翻译
由于简单但有效的训练机制和出色的图像产生质量,生成的对抗网络(GAN)引起了极大的关注。具有生成照片现实的高分辨率(例如$ 1024 \ times1024 $)的能力,最近的GAN模型已大大缩小了生成的图像与真实图像之间的差距。因此,许多最近的作品表明,通过利用良好的潜在空间和博学的gan先验来利用预先训练的GAN模型的新兴兴趣。在本文中,我们简要回顾了从三个方面利用预先培训的大规模GAN模型的最新进展,即1)大规模生成对抗网络的培训,2)探索和理解预训练的GAN模型,以及预先培训的GAN模型,以及3)利用这些模型进行后续任务,例如图像恢复和编辑。有关相关方法和存储库的更多信息,请访问https://github.com/csmliu/pretretaining-gans。
translated by 谷歌翻译
3D从单眼RGB图像中的人类姿势和形状恢复是一个具有挑战性的任务。基于现有的基于学习的方法高度依赖于弱监管信号,例如, 2D和3D联合位置,由于缺乏野外配对的3D监督。然而,考虑到这些弱监管标签中存在的2D-3D模糊,网络在用此类标签培训时容易在本地最佳状态下卡。在本文中,我们通过优化多个初始化来减少势措施。具体而言,我们提出了一个名为多初始化优化网络(MION)的三级框架。在第一阶段,我们策略性地选择与输入样本的2D关键点兼容的不同粗略的3D重建候选。每个粗略重建可以被视为初始化导致一个优化分支。在第二阶段,我们设计网格精制变压器(MRT)以分别通过自我关注机制来优化每个粗略重建结果。最后,提出了一种一致性估计网络(CEN)来通过评估RGB图像中的视觉证据与给定的3D重建匹配,以通过评估来查找来自候选的最佳结果。实验表明,我们的多初始化优化网络优于多个公共基准上的现有3D网格的方法。
translated by 谷歌翻译
重叠的言语日期始终被视为多标签分类问题。在本文中,通过使用电源集编码多扬声器标签,我们将此任务重新格式化为单个标签预测问题。具体地,我们提出了扬声器嵌入感知的神经日复日复速节(发送)方法,其根据语音特征和给定扬声器嵌入的相似性预测电力集编码标签。我们的方法通过利用之前的文献中未能很好地研究,进一步扩展并与下游任务集成在一起。实验结果表明,我们的方法达到了比目标扬声器语音活动检测更低的日益缓释误差率。当涉及文本信息时,可以进一步降低日复速度误差。对于真正的会议场景,与基于贝叶斯隐马尔可夫模型的聚类算法相比,我们的方法可以实现相对改进34.11%。
translated by 谷歌翻译
We aim to bridge the gap between our common-sense few-sample human learning and large-data machine learning. We derive a theory of human-like few-shot learning from von-Neuman-Landauer's principle. modelling human learning is difficult as how people learn varies from one to another. Under commonly accepted definitions, we prove that all human or animal few-shot learning, and major models including Free Energy Principle and Bayesian Program Learning that model such learning, approximate our theory, under Church-Turing thesis. We find that deep generative model like variational autoencoder (VAE) can be used to approximate our theory and perform significantly better than baseline models including deep neural networks, for image recognition, low resource language processing, and character recognition.
translated by 谷歌翻译
Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks. However, recent research generally focuses on short-distance applications (i.e., phone unlocking) while lacking consideration of long-distance scenes (i.e., surveillance security checks). In order to promote relevant research and fill this gap in the community, we collect a large-scale Surveillance High-Fidelity Mask (SuHiFiMask) dataset captured under 40 surveillance scenes, which has 101 subjects from different age groups with 232 3D attacks (high-fidelity masks), 200 2D attacks (posters, portraits, and screens), and 2 adversarial attacks. In this scene, low image resolution and noise interference are new challenges faced in surveillance FAS. Together with the SuHiFiMask dataset, we propose a Contrastive Quality-Invariance Learning (CQIL) network to alleviate the performance degradation caused by image quality from three aspects: (1) An Image Quality Variable module (IQV) is introduced to recover image information associated with discrimination by combining the super-resolution network. (2) Using generated sample pairs to simulate quality variance distributions to help contrastive learning strategies obtain robust feature representation under quality variation. (3) A Separate Quality Network (SQN) is designed to learn discriminative features independent of image quality. Finally, a large number of experiments verify the quality of the SuHiFiMask dataset and the superiority of the proposed CQIL.
translated by 谷歌翻译
Embedding words in vector space is a fundamental first step in state-of-the-art natural language processing (NLP). Typical NLP solutions employ pre-defined vector representations to improve generalization by co-locating similar words in vector space. For instance, Word2Vec is a self-supervised predictive model that captures the context of words using a neural network. Similarly, GLoVe is a popular unsupervised model incorporating corpus-wide word co-occurrence statistics. Such word embedding has significantly boosted important NLP tasks, including sentiment analysis, document classification, and machine translation. However, the embeddings are dense floating-point vectors, making them expensive to compute and difficult to interpret. In this paper, we instead propose to represent the semantics of words with a few defining words that are related using propositional logic. To produce such logical embeddings, we introduce a Tsetlin Machine-based autoencoder that learns logical clauses self-supervised. The clauses consist of contextual words like "black," "cup," and "hot" to define other words like "coffee," thus being human-understandable. We evaluate our embedding approach on several intrinsic and extrinsic benchmarks, outperforming GLoVe on six classification tasks. Furthermore, we investigate the interpretability of our embedding using the logical representations acquired during training. We also visualize word clusters in vector space, demonstrating how our logical embedding co-locate similar words.
translated by 谷歌翻译